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SUMMARY 

The Bradshaw-Ferriss-Atwell model for 2D constant property turbulent boundary layers is shown to be ill- 
posed with respect to numerical solution. It is shown that a simple modification to the model equations results 
in a well-posed system which is hyperbolic in nature. For this modified system a numerical algorithm is 
constructed by discretizing in space using the Petrov-Galerkin technique (of which the standard Galerkin 
method is a special case) and stepping in the timelike direction with the trapezoidal (Crank-Nicolson) rule. 
The algorithm is applied to a selection of test problems. It is found that the solutions produced by the standard 
Galerkin method exhibit oscillations. It is further shown that these oscillations may be eliminated by 
employing the Petrov-Galerkin method with the free parameters set to simple functions of the eigenvalues of 
the modified system. 
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1.  INTRODUCTION 

In this paper we shall use the finite element technique to construct an algorithm for numerically 
simulating one specific type of turbulent flow: the 2D turbulent wall boundary layer. The equations 
which govern 2D wall boundary layer flow are derived from the Navier-Stokes equations by either 
time or ensemble averaging techniques’ and application of the boundary layer order of magnitude 
analysk2 The resulting equations-see equations (1) and (2)-are commonly known as the thin 
shear layer (TSL) equations and form a system of two equations in the three unknowns u and v, the 
mean velocities, and - pu”, the Reynolds shear stress. To solve the TSL equations one must make 
certain hypotheses about the distribution of the Reynolds shear stress. This is called the closure 
problem and its solutions are known as ‘closures’ or ‘turbulence models’. Details of and 
comparisons between a variety of turbulence models can be found in Launder and S ~ a l d i n g , ~  
Haines? R ~ d i ~ , ~  and M a r ~ i n . ~  One popular group of turbulence models is based on the eddy, or 
turbulent, viscosity concept in which an eddy, or turbulent, viscosity vt is defined by 

- au 
- u’v’ = v, -. 

a Y  
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Dimensional arguments imply that the parameter vt is proportional to a characteristic velocity 
scale multiplied by a characteristic length scale. Prandtl proposed the form 

where l,, the mixing length, is prescribed using empirical data. An example of a mixing length 
closure model is given by Cebeci and Smith.’ More complex eddy viscosity models assume that Jk, 
where k is the turbulent kinetic energy, is a characteristic velocity scale. Examples of this type 
are the k-L and k--E closure  model^.^,^ In the former a transport equation for k is constructed 
and the length scale L is specified algebraically. In the latter transport equations for k and the 
dissipation E are constructed and the length scale L is related to the dissipation by the relation 

E = C,k3l2/L, 
where C ,  is a constant. 

The model employed in this paper is the Bradshaw, Ferriss and Atwell (henceforth denoted BFA) 
turbulence model’ which differs from those described above in that it does not employ the eddy 
viscosity concept. Instead, since experimental evidence suggested that k K UID’, the turbulent kinetic 
energy equation is converted into a transport equation for the Reynolds shear stress. Therefore the 
BFA model is really the simplest of the family of shear stress transport models of which brief 
descriptions can be found in M a r ~ i n . ~  

The basic numerical techniques required for solving problems in fluid mechanics are well 
documented in the texts by Roache’ for finite differences and by Baker” and Connor and 
Brebbia’l for the finite element method. The paper by Hutton” reviews suitable finite element 
techniques for general viscous incompressible flow problems. Comprehensive theoretical treat- 
ments of the finite element method are given by Strang and and Mitchell and Wait.I4 
Petrov-Galerkin, or generalized Galerkin, methods have been developed and applied by Christie 
et a1.,’5,’6 Mitchell and Gr i f t i th~”~~’  and Morton and Parrott.” For the mixing length and 
k - - ~  turbulence models finite element algorithms have been proposed by Baker,” Hutton,I2 
Hutton and Smith,20 Launder and Spalding,” Morgan et a1.,22r23 Soliman et a ~ , ’ ~  
and Taylor et al.27 

Section 2 gives a brief outline of the BFA turbulence model. The mathematical properties of the 
system of equations are investigated in Section 3. The system will be shown to be of hyperbolic 
type, and the equations of the characteristic curves and the equations of the ordinary differential 
equations along those curves will be derived. The numerical solution method will be constructed in 
Section 4 and a selection of the numerical results obtained is given in Section 5 .  

2. THE TURBULENCE MODEL 

The turbulence model as described in this paper is only applicable to one class of external flow, i.e., 
steady, two-dimensional, constant property (i.e., constant viscosity ’and constant density), 
turbulent boundary layer flow over a smooth flat plate. 

The flow external to the boundary layer is assumed to be in steady irrotational motion and the 
flow within the boundary layer is assumed to be fully turbulent. The mean flow is assumed to be 
two-dimensional in the x-y plane with the external flow moving parallel to the x axis. The two 
components of the mean velocity vector are u, the longitudinal velocity, and u, the transverse 
velocity. The fixed boundary, or wall, is positioned at y = 0. 

At the fixed boundary the no-slip condition holds and at the outer edge of the boundary layer the 
velocity u tends asymptotically to the free stream velocity u,. We assume that there is no suction or 
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( f r e e  streain) 
U(X,Y) = u,(x) onse t  of 

f u l l y  t u r b u l e n t  
f 

V(X,O) = 0 

Figure 1. Geometry of the turbulent boundary layer problem 

injection of fluid at the wall boundary. Therefore we have the physical boundary conditions 

u(x,  y = 0) = 0, u(x,y-* co) = u,, 
The boundary layer thickness 6 is conventionally defined to be the distance along the y axis at 

which u = 0.995 u,. For numerical calculation the outer edge boundary condition is usually applied 
at a distance y = 6 + ,  where 6 + is a finite distance larger than 6 .  The geometry of the problem is 
illustrated in Figure 1. 

The mean motion of the fluid for boundary layers ismodelled by the well-known thhshear layer 
(TSL) equations’,* 

v(x,  y = 0) = 0.  

due au - 
p u-+u- =pu,--+- p--pu’v‘ ( il ii) dx :y( ay  )7 

P (g + ;) = 0, 

where v = p / p ,  u and u are the components of the mean velocity vector and u’ and u‘ are two 
of the components of the fluctuating velocity vector. Equation (1) is the mean momentum equation 
and equation (2) is the mean conservation of mass (continuity) equation. As we have assumed 
that the flow has constant density, we shall henceforth assume, without loss of generality, that 
p is a constant equal to 1. 

The term in parentheses on the right-hand side of (l), 
au - 

p- - pu’v’, 
aY 

(3) 

is the total shear stress, commonly denoted z, and is the sum of the viscous (left-hand term) and 
turbulent (right-hand term) stresses. For turbulent boundary layer flows it can be shown that the 
viscous stress term in (3) is the dominant term only in a very thin layer close to the wall.’ Outside of 
this layer it has small magnitude compared with the Reynolds stress and thus may be neglected. 
The TSL equations for 2D constant property turbulent boundary layer flow are therefore a system 
of two equations in the three unknowns u, u and - pu”. 

The BFA closure model consists of an empirical transport equation for the Reynolds shear stress 
derived from the turbulent kinetic energy equation which, for 2D constant property flow without 
body forces, is’ 

- a u  a i- 
aY aY 0 P 

a a 
ax  aY 

u-(k)+v-(k)= -u’u’ --- -p’v’+kv  -& ,  (4) 
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x 10-2 XlO' 
5 

Figure 2. The empirical functions L and G 

where all the viscous terms except the dissipation have been treated as negligible. 
To derive the model, the following closure quantities are defined: 

where a, is the ratio of the shear stress to twice the turbulent kinetic energy, L is a dissipation length 
scale and G is a diffusion function. a, and G are dimensionless, while L has the dimensions of 
length. The parameter z, is chosen to be the maximum shear stress in the region [6/4,6]. 
Bradshaw et al.' give full details concerning the definition, justification and measurement of the 
above quantities. The values chosen by Bradshaw et al. for these functions are 

Figure 2 illustrates L and G. TownsendZ8 gives justification for the particular value chosen for a,. 
Substituting expressions (5)-(7) into equation (4) results in the following empirical transport 

equation for the Reynolds shear stress: 

Notes 

(1) The specification of a, as a constant restricts the model to flows where the Reynolds stress 
does not change sign, such as boundary layers. However, there have been modifications 
which allow the treatment of duct flows, jets and wakes.6 

(2) For the BFA turbulence model given above, the length scale L is specified by an algebraic 
relation. A length scale transport equation has been developed by B r a d ~ h a w . ~ ~  
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3. MATHEMATICAL PROPERTIES OF THE TURBULENCE 
MODEL EQUATIONS 

The natural notation for quasilinear first-order systems is the matrix form 

(9) A@, x, Y)W, + B(w, x, Y)W, = C(W, X? Y). 
For the BFA system of equations A and B are the 3 x 3 matrices 

(W 1 -1 
0 

u o o  v o  
A=[: 8 :], B=[ 0 1  

-2a,.r 0 v + 2 a , ~ ~ ~ G  

and w and C are the 3-vectors 
T T du 

dx w = (u, u,t) , c = ( u e 2 , o ,  - 2u, ( .r;/zg* + T)) , 
where (x, y ) E [ x O ,  X ]  0 [t, 6 + 1, the point y = t lies in the logarithmic law region, i.e., u,y/v > 30-50, 
and 6, > 6. Associated with (9), (10) are the initial conditions, at xo = 0 say, 

u(0,y) = uo(y), U(0,Y) = fJo(Y), T(0 ,Y)  = Zo(Y). (1 la) 
As viscous effects near the wall have been neglected, the model is valid only outside the viscous 
sublayer close to the wall and so bridging functions, such as the logarithmic law,ly3' must be used 
to impose the numerical near-wall boundary conditions at y = 5. Therefore the boundary 
conditions associated with (9), (10) are of the form 

u(x, t )=ur - In -L + c , U(X,~+)=ZI,(X),  v(x,[)= - [: ( u : )  ] 
where K and C are constants. 

The set of equations (9)-(11) describes an initial boundary value problem (IBVP) for a 
quasilinear first-order system in which the independent variables x and y are such that x is treated 
as a timelike variable and y as the spatial variable. 

For a general 3 x 3 system of quasilinear first-order equations we can define hyperbolicity as 
follows. 

DeJinition3' 

P if the zeros Ai, i = 1,2,3, of the characteristic polynomial 
The general first-order quasilinear system (9) is said to be hyperbolic in the x direction at a point 

Q(P,  A): = det (A(P)A - B(P)) 

are all real and if the left eigenvectors l i ,  i = 1,2,3, satisfying 

lT(A(P)Ai - B(P)) = 0, i = 1,2,3, 

form a set of three linearly independent vectors in R3. 

Assuming that system (9) is hyperbolic, we can determine the set of characteristic curves Vi, 
1,2,3, in x-y space by solving 

dY 
dx 

gi: - = Ai(W, x, y), i =  1,2,3. 
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Equivalently, by introducing a parameter s, we can assign a direction vector (1, Ai) to points x(s), 
y(s) where 

(14) 

Using (12), we may write (9) in the characteristic normal form 
LAW, + ALAw, = LC 

where the rows of L are the independent left eigenvectors and A = diag (Ivl, &, &). In component 
form (15) is 

where 

Using (13) and (14), the system of partial differential equations given by (16) can be written as the 
system of ordinary differential equations 

aij = LikAkj, ci = LjkCk. 

dw. dx 
a,.---! = -c. i =  1,2,3, 

j= l  lJ ds ds '' 

where s characterizes the curve Vi and is defined by 

(17) 

The two sets of equations (17) and (18) comprise the set of equations solved by the method of 
characteristics. 

We now examine the Cauchy problem for the general first-order quasilinear system (9), i.e., the 
pure initial value problem consisting of (9) together with prescribed data on the initial curve. 

The Cauchy-Kowalesky theorem32 states that if the initial data are specified on a non- 
characteristic line, a unique solution to the Cauchy problem exists in a neighbourhood ofthe initial 
line. However, if the initial line is characteristic, which occurs whenever det (A) = 0, then the 
solution does not exist unless certain constraints are satisfied, and even if it does exist the solution 
is in general non-unique. 

R i ~ h t r n y e r ~ ~  shows that when an initial line is characteristic, a necessary condition for the 
existence of a solution to the Cauchy problem is that the initial data wfx = xo, y )  satisfies the 
differential relationship 

IT(0)Bw, = IT(0)C, (19) 
where I'(0) is the left eigenvector of A corresponding to the zero eigenvalue of A. 

For the particular system defined by (9)-(11) it is easily seen that det (A) = 0. Thus there exists a 
family of characteristic curves with equation x = constant; in particular the initial line is 
characteristic. Therefore the problem as stated is not well-posed. From (19), in order for a solution 
to (9)-(11) to exist, the following ordinary differential equation must be satisfied: 

Furthermore, as written, the system (9)-(11) is ill-posed with respect to any numerical solution 
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method which employs a time (x direction) marching scheme. For example, stability requirements 
for explicit time marching schemes imply a zero-length time step. Using implicit marching schemes 
results in oscillatory values for the v component. To overcome this ill-posedness of the problem, we 
reformulate (9)-(11) as the 2 x 2 system 

w = (U, z)T, 

p =  U I G T ; ~ ,  4 = (’’ + 2 ~ 1 2 ) ” ~  

and the velocity u is assumed known or calculable. 

x direction with eigenvalues given by 
Proceeding with the method of analysis outlined previously, we find that (21) is hyperbolic in the 

u + p - 4  
7 A 2 =  A, = 7 

U + P + 4  
U U 

and corresponding left eigenvectors 

I,=[ P - 4  1. I , = [  P + 4  3. 
The two families of characteristic curves are defined by 

u + p + q  dx )- ds 

and the characteristic normal form of the system is 

Using the property that the angles between the characteristic curves and the x axis are given by 

tan yli = Ai, 

we can state the following: 

(1) Near the wall, but outside the viscous sublayer, G << T and the curves are at approximately 
equal and opposite angles to the x axis, 

(2) Near the boundary layer edge z << G and so one characteristic curve coincides with the 
streamline while the other nominally coincides with the boundary layer edge.* 

The hyperbolicity of (21) leads to the Courant-Friedrichs-Lewy (CFL) stability criterion which 
restricts the time step for explicit marching schemes. This condition requires 

where Ay is some discretization interval in the y direction. 
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Initial and boundary conditions 

are the Cauchy data 
For the system (21) the correct initial data to prescribe, on xo = 0 say, for a well-posed problem 

U,(O,Y)  = U O O i ) ?  M A Y )  = Z O ( V ) >  r < Y  < 6,. (26) 

The number of boundary conditions that must be imposed at a point on the boundary is 
governed by the characteristic curves at that point. One is allowed to impose as many boundary 
conditions as there are characteristics entering into the solution domain from the boundary. If as is 
the case with (21) a characteristic is coincident with a boundary, the number of conditions is equal 
to the number of entrant characteristic curves excluding the boundary characteristic. Therefore 
one condition at each boundary can be imposed and we choose 

Imposing consistency conditions at (0,t) and (076 +), i.e., 

u f ( o , t ) = u B ( O , ~ ) ,  u I ( o , 6 + ) = u B ( o , 6 + ) ,  (28) 
we can state, using existence and uniqueness  theorem^,^' that the IBVP given by (21), (26) and (27), 
where (26) and (27) satisfy (28), has a unique solution in some neighbourhood of x > 0 , t  d y < 6,. 
Note that the use of the logarithmic law to specify the near-wall boundary condition has 
introduced an additional unknown parameter q!,'2 (x) = u,. 

4. THE SOLUTION METHOD 

The solution method entails discretizing system (21) in the spatial direction using the Petrov- 
Galerkin technique and marching the resulting system of non-linear ordinary differential 
equations in time (x direction) using the 6 method. 

Considering Cl to be an interval [<,6+] of R, we define a partition A on Q as 

A : t = y ,  < y ,  < ' . '  < y N + l  = S + ,  

with an associated uniform step length h = y j +  - y j 7  1 < j < N .  
Stating the problem as 

A(w)wx + B(W)W," = W), 

w(0, Y )  = WO(Y), 

with initial and boundary conditions 

w ~ ( x ,  <I = b,  9 wi(x, 6,) = 6 2 ,  (29c) 
where A, B and C are defined by (21 b, c) and w = (w1, w ~ ) ~  = (u, T ) ~ ,  we define the weak formulation 
of (29) to be:l4,I7 

Find w = (u, T)~, where u ~ H t ( 5 2 ) ,  zeH' (Q) ,  such that 

(A(w)w, + B(w)w, - C(W), Z) = 0, 

(w(0, Y) - WO(J4,Z) = 0, 
for all z = ( Z ~ , Z , ) ~ ,  where Z,EH;(Q), z2eH1(!2) and the inner product is defined as 

wTzdy, w,zEL~(Q). 
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The Galerkin approximation W = ( U ( x ,  y), T(x, y))' to w = (u, 2)' is defined to be 

Choosing the trial functions to be the usual linear 'hat' functions, defined away from the boundaries 
by 

- l < s < 0  

q j ( y ) = i :  iz: y;:; 1 1 .  s = y / h - j ,  (31) 

application of the boundary conditions to (30) yields 

wl (x, Y1) = 1 3 wl (x, YN + 1 = b2 

and we therefore have a set of 2N unknowns 

Uj(x) ,  j = 2,.  . . , N ;  Tj(x), j = 1 , .  . . , N + 1. 

Choosing test functions to be 

$k(Y) = (A)(qj(y) + y'aj(y)), j = 2,. . . , N ;  k = j - 1 ,  

$ k ( y ) = ( ~ ) ( q j ( Y ) + y ' o j ( y ) ) ,  j =  I , . . . ,  N +  1; k = N -  1 +j ,  (32) 

where y1 and y 2  are free parameters and oj is a quadratic perturbation f ~ n c t i o n ~ ~ , l * ' ~ ~  defined 
away from the boundaries by 

0 6 s d l  , s=y /h- j ,  
- l , < s < 0  

Is1 > 1 i 
we can state the semi-discrete Petrov-Galerkin method for (29) as: 

Find 
N +  1 

such that 

and 

where 

(A(W)W, + B(W)W, - C(W), $ k )  = 0, k = 1,. . . ,2N, (33b) 

(334 (w(o? Y) - w O ( Y ) ?  $ k )  = O, 

Wl(X,Yl) = hl, w , ( X > Y N + l )  = b,. 
Evaluating the inner products (33b, c), using numerical integration to evaluate those inner 

products which involve the empirical functions L, G and dG/dy, results in a non-linear system of 
ordinary differential equations which may be written in the form 

M(W)W + h-'S(W)W = h-'F(W). (34) 
Discretizing this system of equations using the one-step 0 method, in which the differentiated 

terms are approximated by 

W N (W"+' - W")/k, k = x " + l -  X", n=0,1,2 )..., 
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and the non-differentiated x-dependent terms by 

w 2! ewn+l + (1 - 8)wn E wnfe, 
results in the following system of non-linear algebraic equations which are to be solved for the 
unknown quantities W"+ ': 

[M(Wn+e) + 8rS(W"+e)]W"+1 = [M(Wn+e) - (1 - 8)rS(Wn")]W" + rF(W"+e), (35) 

where r = k/h and 0 d 6' 6 1. The boundary conditions have been incorporated into (35) in the form 

wyll = u;+1 = bl(X"+l), W"+ 1 , N + 1  1 = u;y, = b2(X"+1). 

The schemes defined by values of 8 = 0, $, 1 are the Euler, Crank-Nicolson and backward Euler 
Petrov-Galerkin schemes respectively, denoted by EPG, CNPG and BEPG. 

By inspection of (35) it can be seen that for 8 = 0 the system is linear in Wn+' and for 8 > 0 it is 
non-linear. However, as shall be shown later, the EPG scheme, or strictly any scheme for which 
8 < 3, is not an appropriate scheme for solving (29). Therefore we shall henceforth assume 
$ d 0 d 1. Among the many techniques available for solving non-linear systems such as (35) are 
the predictor-corrector (PC) method of Douglas and D ~ p o n t ~ ~  and the well-known Newton- 
Raphson (NR) type methods. When considering (35), the former method has an advantage over 
NR in that it does not require specification of the Jacobian of the system. In this paper we shall 
describe only the PC technique; see Stewart36 for details of the NR implementation. The PC 
technique requires (35) to be split into the following two linear subsystems: 

P: [M(W") + 8rS(W")]W;~ = [M(W") - ( 1  - 8)rS(Wn)]W + rF(W"), 

c :  [M(w;~;~) + ~~S(W:~;~)-JW~~;:~  = [M(w;~;~) - (1 - e)rs(w~,;~)~w 
(364 

+ YF(W:~~C'), ( 3 W  
where i = 1,2,3,. . . , I or until succeeding iterates have converged to within a specified tolerance, 
and 

w;,y = ew;,; 1 + (1 - e)wn. 
In practice it was found that one application of the corrector was usually sufficient to give 
reasonable results. 

The structure of the linear systems (36) is of the form 

A W = b  

where A is a 2 ( N +  1) x 2 ( N +  1) block tridiagonal matrix and W and b are 2(N + 1)-vectors. 
Various efficient methods exist for the solution of such banded systems. Examples are the banded 
matrix algorithm in the LINPACK package37 and the Keller block elimination algorithm.38 The 
Keller algorithm proved to be very effective; details of the implementation can be found in 
Stewart.36 

Boundary conditions 

We require to impose two boundary conditions: one near the wall, external to the viscous 
sublayer; and the other at  the outer edge of the turbulent boundary layer. We examine the 
specification of the latter condition first. 

The outer edge boundary condition is 
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where the boundary layer thickness Sn+' = 6(xn+l). To allow for the growth (or otherwise) of the 
turbulent boundary layer, we specify condition (37) by increasing (or decreasing) the number of 
nodes across the layer according to the increase (or decrease) in the boundary layer thickness. To 
estimate the change in 6, we appeal to the theory of characteristics outlined previously, in which it 
was noted that the outermost characteristic nominally coincides with the boundary layer edge. 
The angle between this characteristic curve and the x axis is given by 

Therefore, assuming that the characteristic curve is approximately linear, we have 

( +; + q, I:+ ' ' S;+' N S'!+ + AX"+' 

If the x step length Ax is set equal to the CFL step length, we can assume that the boundary layer 
thickness will not increase by more than one y step length, h, per x step length. Therefore a suitable 
procedure for defining the position of the outermost node is to add one additional node before 
solving the PC equations, setting U$+z  = Ue(xn), TnN+ = tolerance and U$:\ = Ue(x"+'). If, after 
solving the PC equations, it is found that U$>l1 > 0.999 Ue(x"+') and T;:: < tolerance, then 
delete the added node N + 2; otherwise set N + 1 -+ N + 2 (see Figure 3). 

Obviously, as the width of the boundary layer increases, the number of nodes, and hence the 
number of equations in the system (35), will increase, leading to the method employing a much 
smaller h step than is required for the assumed accuracy of the solutions. To keep the calculation 
'optimal' in some sense, we employ the technique of Bradshaw et aL8 in which a limit is imposed on 
the number of cross-stream nodes. When this limit is attained, the y step length is increased by the 
appropriate factor, with the number of nodes reset to the initial number. The values of U and T at 
the new nodes are found by interpolation. 

An alternative to the above procedure is to use transformation techniques in which the region 
[x,, X ]  0 [t, 6 + ] is transformed into the rectangular region [r,, R ]  0 [0,1]. Such transformation 
techniques have been used in many variable/adaptive mesh algorithms. Details of such methods as 
applied to equations (29) can be found in Stewart.36 

I I 
/ / w a l l /  / 

step n step n+l 

- - characteristic curve 

linezr approximation 

Figure 3. Geometry of the boundary conditions at the outer edge 



504 I. B. STEWART AND K. UNSWORTH 

We now consider the imposition of the near-wall boundary condition for the PC solution 
method. Near the wall the boundary condition to be imposed takes the form 

(38) 

where y,  must lie in the logarithmic law region, i.e., y,  > 30-50v/~:+~ and u:" = T;/~(X"+'). 
Note that (38) depends on the unknown skin friction coefficient T;''(x'+ '). Expressions of the 
general form 

have been derived by various authors to relate z, to known or calculable quantities. For 
example, Bradshaw et ~ 1 . ~ '  define a to be 

d 
dx 

C!=@3-(U,)2, 

while Cebeci et ~ 1 . ~ '  use 

where 
a* = C, (In y:)' + C, In y: + C, + C4/y: 

and the constants Ci have values 

C, = 5.94884, C2 = 13.4882, C, = 13.5718, C, = - 698.304. 

An iterative procedure based on equations (38) and (39), where CI is defined by either (40a) 
or (40b), which could be used to find z;+' consists of using the values available at step n to 
predict T;+' and hence U;", updating these values after each solution of the predictor or 
corrector system. However, this method proved to be numerically unstable. To achieve a 
numerically stable procedure, it is necessary to impose an additional boundary condition, for 
TI, at the near-wall boundary. To find the three unknowns U , ,  T ,  and z,, the following 
procedure39 is used prior to solving the PC system. 

We have two equations (38) and (39) relating the three unknowns. An additional equation 
can be obtained from the ordinary differential equation along the wall pointing characteristic 
curve. Assuming that the characteristic curve is approximately linear, and employing central 
difference approximations, this equation can be written as 

TB( u;+ - U,) - ~ ( p  - 4)  (T;+ 1 - T*) 
2% I B  

where the points A and B lie along the line projected back from the first node point at the 
fn + 1)st level and inclined at an angle 

n +  1 q2  = tan-' (.>I V + p - 4  
1 
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I h  4 
/ / / / w a l l /  / / / 

step n step n+l 

characteristic curve 

linear approximation 

- -  

Figure 4. Geometry of the boundary conditions near the wall 

to the x axis. A is the point where this linear approximation to the characteristic curve crosses 
x = x" and B is taken to be the midpoint of this line. Figure 4 illustrates the geometry. 

If we set the x step length equal to the CFL step length, then we are assured that the point A lies 
between the first and second nodes. Assuming u and z behave like logarithmic and linear functions 
respectively, the values of UA and TA are found by the interpolation process 

where s = a/h = (k/h)  tan y12. The values at B are calculated as above using s = (k/2h) tan y2. 
The near-wall boundary procedure therefore consists of solving equations (38), (39) and (41) 

simultaneously using Newton's method to give the required values at step n + 1. The values of U ,  
and T, are then used as boundary conditions for the solution of the PC equations. 

Finding the transverse velocity v 

A near-wall boundary condition for v can be derived,8 namely 
Throughout the preceding it has been assumed that values for Vi, i = 1,. . . , N + 1, were known. 

To find the internal values, we could apply the Petrov-Galerkin method with 6 method time 
stepping to the continuity equation. This would give an ( N  + 1) x ( N  + 1) tridiagonal system which 
would be solved for V each time new values for U became available within the PC or NR 
iteration. However, by again appealing to the theory of characteristics, we can construct an 
alternative, elegant and less computationally expensive method. Recall that application of the 
existance condition (19) required that the ordinary differential equation (20) be satisfied by 
u, v and z at every point x ~ [ x , , X ] .  Discretizing (20) in space using the explicit Euler 
scheme and using (42) as an initial condition, we have an efficient and inexpensive procedure 
for calculating Vi, i = 1,. . . , N + 1. 



506 I. B. STEWART AND K. UNSWORTH 

Analysis of d ~ e r e n c e  equations 

The analysis given below is based on the simple scalar hyperbolic equation 

u, + cu, = 0, t > 0, - 00 < x  < m, (43) 

where c is assumed to be locally constant and greater than zero. Although (43) is a linear IVP, 
the results derived can supply valuable insight to the behaviour of the non-linear IBVP, 
equation (29). 

Application of the PG method with 8 method time stepping to equation (43) gives 

[(2 + 3y)(UJ_+: - UJ-1) + 8(u;+1 - UJ) + (2 - 3y)(UJf: - U,"+J] 

= - 6r[-(1+ y)UJ+!  + 2yUJ" + (1 -y)UJf!], (44) 
where r = c Atlh. 

The von Neumann analysis of fully discrete systems assumes solutions of the form 

u," = vneiwx3, lwhl < n, (45) 
where x j  = j h  (see, for example, Reference 41). Substitution of (45) into the difference equation (44) 
gives the characteristic equation for the amplification factor z(w) = V n + ' / V .  The von Neumann 
stability criterion41 states that the full discretization is stable if the solutions of the characteristic 
equation satisfy lz(w)l < 1 for all lo/ < x/h. 

For (44) the characteristic equation is 

1 + (1 - 8)A(o)  
1 - 8 A ( o )  ' 

Z ( 0 )  = 

where 
2y sin2 (oh /2 )  + i sin (oh)  

4 + 2 cos ( o h )  - i3y sin (oh)'  
A ( o )  = - 6r 

By writing z(w) in the form 

z ( o )  = Iz(o)leiargz@") - - Iz(o)le-iwc*At, 

where 
- arg z ( o )  C*(Q) = 

o A t  ' 

we can further investigate the properties of the fully discrete system by comparing the amplification 
factor with the ratio of the exact solution, 

u(x, + At) = ,-iwcAr 

u(x ,  t )  

Following Mitchell and Grifiths17 and Richtmyer & Morton,42 we say that a method is 
dissipative of order 2s, with s a positive integer, if 

I z ( w ) ~  < 1 - o(oh)2s 

for o a positive constant, Johl < n. Further, the method is dispersive if c*(w) # c. 
Using Taylor series expansions we can derive the following expressions: 

Iz(o)/ = 1 - i(28 - I )r2(oh)2 + &[(24f13 - 2402 + 128 - 3)r4 - y r ] ( ~ h ) ~  + 0 ( 0 h ) ~ ,  

argz = - r ( o h )  + $ ( 3 P  - 38 + l ) r3 (oh)3  + O ( ~ o h ) ~ ,  
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- - iwcAz - - - 3(28 - l ) r2(oh)2  + 6i(6d2 - l ) r 3 ( ~ h ) 3  

+&[(24d3 - l )r4 - y r ] ( ~ h ) ~  + o ( ~ h ) ~ .  

From the above we can deduce that: 

(1) Any method for which 8 < 3 is unstable in the sense of von Neumann for any value of y. 
Conversely, if 6' 3 t ,  any y, the method is stable. 

(2) The method is conservative, i.e., non-dissipative, only when 6' = 3 and y = 0, i.e., the CNG 
method. For 6' = 4, y # 0, CNPG, the method is dissipative of order four. 6' > 3 gives a 
dissipative method of order two, i.e., a diffusive method, irrespective of the value of y. 

(3) The method is dispersive of order two. 
(4) The method is in general first-order accurate, with second-order accuracy only achieved 

when 6' = 3. 

5 .  NUMERICAL RESULTS AND DISCUSSION 

In this section we present the numerical results from four test problems selected from the 
comprehensive series of numerical results available in Stewart.36 The data for three of the four test 
problems are taken from the extensive set of test data compiled by Coles and The data for 
the other test problem can be found in the paper by Tsuji and M ~ r i k a w a . ~ ~  A brief description of 
the characteristics of all four test problems is given in Table I. Reading from left to right the entries 
in the Description column give the pressure gradient encountered as the flow moves downstream 
from the initial x station. 

Results obtained using the CNG algorithm, i.e., the free parameters y1 and y 2  are such that 
y1 = 0 = y 2 ,  are given in Figures 5(a) and 5(b). Figure 5(a) compares the U ,  T profiles calculated by 
the CNG algorithm with those calculated by the method of characteristics (MOC) algorithm of 
Bradshaw et ~ 1 . ~ 3 ~ ~  at selected points along the x axis for each test flow. 

Figure 5(b) compares the integral flow parameters cf, H and R, produced by CNG with those 
produced by the MOC algorithm and by experimental measurement. In addition, each test case 
has a diagram which plots the variable denoted DEL 6'. This variable is a computational relative 
error estimate defined as follows: 

DEL6':= 10, - 021/02, 

Table I. Description of numerical experiments 

Originator and Reference Description 

Ludweig and Tillmann Moderately favourable 
Ref. 43, ID = 1300 

Wieghardt 
Ref. 43, ID = 1400 

Zero 

Schubauer and Klebanoff 
Ref. 43, ID = 2100 strongly adverse, separation 

Favourable, N zero, 

Tsuji and Morikawa 
Ref. 44 

Zero, adverse, favourable 
adverse, favourable 
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x = 150.0 1 0 x = 250.0 I 0 X = 350.0 1 

FLOW : Ludwieg & Tillmann ID = 1300 

0 x = 125.0 1 0 x = 250.0 1 0 x = 375 0 I 

FLOW . Wieghardt ID = 1400 

0 X = 600.0 I 

0 x = 100.0 1 0 X = 175.0 1 0 X = 250.0 1 0 X = 300.0 1 

FLOW : Schubauer & Klebanoff ID = 2100 

0 x = 80.0 1 0 X = 160.0 1 0 X = 240.0 1 0 X = 320.0 1 

FLOW ' Tsuji & Morikawa 

Figure 5(a). Comparison of the CNG method with MOC. U velocity and Reynolds shear stress profiles. The x stations 
and U / U ,  ranges are shown at  the top of each diagram. The range of T x lo5 is given at the foot of each diagram. 
Key: 0. Reynolds shear stress for MOC; V, U velocity profile for MOC; -, U velocity profile and Reynolds shear 

stress profiles for finite element methods 
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F'LOW ' Tsuji & Morikawa 

Figure 5(b). Comparison of the CNC method with MOC. Graphs of the integral flow parameters cf, H, R, and DEL 0. 
The range of x stations is given at the foot of each diagram. The function ranges are given at the left-hand side of 

each diagram. Key: 0, experimental readings; V, results from MOC; -, results from finite element methods 
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where 8, is the value of 8 calculated from the momentum thickness definit i~n,~'  i.e., 

and 8, is the value of 8 calculated from the momentum integral e q ~ a t i o n , ~ '  i.e., 

Note that as (46) and (47) are defined under the same assumptions employed in constructing the 
TSL equations, the computational relative error estimate is only valid in regions where the TSL 
assumptions hold; for example, the estimate should not be considered accurate or valid within 
regions where the flow is close to separation. 

As is evident from Figure 5(a), the CNG solutions, although acceptable in terms of accuracy in 
comparison with the MOC solutions, exhibit oscillations; mainly in the Reynolds shear stress 
profiles. For flows without large gradients in the solution profiles these wiggles may be acceptable. 
However, for flows in which large gradients appear in the solution profiles the oscillations can 
adversely affect the solution to a significant degree. For example, in the latter stages of the Tsuji and 
Morikawa test case it can be seen that the CNG method does not accurately model the U ,  T 
profiles in the vicinity of the 'knee point'.44 However, a comparison of the DEL 8 parameters for 
CNG and MOC (Figure 5(b)) shows that the CNG method gives a significant improvement in 
computational accuracy. 

The oscillations in the solution profiles produced by CNG prompted the development of the 
CNPG algorithm, in which the free parameters y1  and y 2  are now generally non-zero. Recall that 
while the CNG method is conservative (non-dissipative), the CNPG method is fourth-order 
dissipative. The most appropriate values for y1 and y2 were found by numerical experimentation to 
be the following: 

Momentum equation 

Shear stress equations 

where 1, and 1, are the eigenvalues of the system (29a) given by equations (22). Therefore the 
free parameters are different for each equation and vary both across (y direction) and along 
(x direction) the boundary layer. In other words they are flow-dependent. 

Numerical results produced by CNPG with the parameters y1  and )* defined by (48), (49) 
are given in Figures 6(a) and 6(b). 

Comparing Figure 6(a) with Figure 5(a), it can be seen that the oscillations have been almost 
completely eliminated. There are a few oscillations present near the start for some flows, e.g., 
Wieghardt at x = 125. These oscillations are caused by inconsistencies between the experimental 
initial and boundary values and, as can be seen, are soon damped by the CNPG method. 
Comparing the U ,  T solution profiles given in Figures 5(a) and 6(a) and the DELB graphs 
given in Figures 5(b) and 6(b), it can be seen that the accuracy of the standard Galerkin method 
has not been compromised by the fourth-order dissipative CNPG method. 
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0 X = 150.0 1 0 X = 250.0 1 0 

FLOW Ludwieg & Tillmann ID = 1300 

FLOW Wicghardt ID = 1400 

0 x = 100.0 1 0 X = 175.0 1 0 X = 250.0 1 0 X = 300.0 I 

FLOW : Schubauer & Klebanoff ID = 2100 

0 x = 80.0 1 0 X = 160.0 1 0 X = 240.0 1 0 x = 3LO.O 1 

FLOW ' Tsuji & Morikawa 
Figure 6(a). Comparison of the CNPG method with MOC. Diagram annotation as per Figure 5(a) 
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Figure 6(b). Comparison of the CNPG method with MOC. Diagram annotation as per Figure 5(b) 
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FLOW : Tsuji & Morikawa 

0 x = 80.0 1 0 x = 160.0 1 0 X = 240.0 1 
1 A v o  

v o  

FLOW . Tsuji & Morikawa 
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0 x = 100.0 1 0 X = 175.0 1 0 X = 250.0 1 0 X = 300.0 I 

FLOW : Schubauer & Klebanoff ID = 2100 

Figure 7(a). Comparison of the BEG, BEPG and PLEG methods with MOC. Diagram annotation as per Figure 5(a) 
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Figure 7(b). Comparison of the BEG, BEPG and PLEG methods with MOC. Diagram annotation as per Figure 5(b) 
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Figure 8. Comparison of the CNPG, CNG, BEG and PLEG methods for the Tsuji and Morikawa test problem 

Other 8 method techniques 

Recall that setting 8 = 0 entails using the explicit Euler method as the time stepping scheme, 
giving the EG and EPG methods, while setting 8 = 1 entails using the backward Euler scheme, 
giving the BEG and BEPG methods. 

It was shown in Section 4 that the EG and EPG schemes were unstable for the scalar hyperbolic 
equation. This is also the case for the non-linear hyperbolic system (29). The numerical instability 
of the EG scheme for hyperbolic equations has been known for some time, as has the fact that 
conditional stability can be achieved by partial lumping (see, for example, Reference 17). By 
contrast, using the techniques for analysing difference equations outlined in Section 5,  it can be 
shown that the partially lumped EPG scheme is not consistent with the differential equation. 

However, although the partially lumped EG scheme (PLEG) is stable, the solutions produced by 
the scheme are poor. Examples are given in the bottom two test flows of Figures 7(a) and 7(b), i.e., 
Tsuji and Morikawa, Schubauer and Klebanoff, and also in Figure 8. From Figure 7(b) it can be 
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seen that the accuracy of the method as measured by DEL 8 is significantly worse than that of the 
MOC. 

The top two test flows in Figures 7(a) and 7(b) are produced by the BEG and BEPG schemes 
respectively. In Section 4 it was shown that both BEG and BEPG schemes are second-order 
dissipative, i.e., diffusive, schemes. The effect of this inherent diffusivity in both methods is clearly 
seen in the U ,  T solution profiles at x = 320 for the Tsuji and Morikawa test flow, where the sharp 
change in the solutions at the knee point have been completely smoothed. See also Figure 8 for a 
more detailed comparison. Note also that the accuracy of the BEG and BEPG methods as 
measured by DEL8 is comparable with the MOC. 

6. CONCLUSIONS 

In this paper we have constructed a numerical scheme for solving the Bradshaw, Ferriss and 
Atwell turbulence model for 2D constant property turbulent boundary layers. The numerical 
results produced by the method for a selection of turbulent boundary layer test data have 
been presented. 

The system of equations comprising the BFA turbulence model was shown to be ill-posed 
and a modified problem was stated. The equations of this modified problem were shown to be 
of hyperbolic type and the equations for the eigenvalues and characteristic curves were derived. 
The ordinary differential equations along the characteristic curves were also derived. The 
numerical scheme was constructed by employing the Petrov-Galerkin technique to discretize 
the equations in the y direction. The resulting non-linear ordinary differential equations are 
integrated in the x direction by the 0 method. To specify the near-wall boundary condition in 
the numerical scheme, it was necessary for numerical stability to employ the ordinary differential 
equation along the wall pointing characteristic. The position of the outer edge of the turbulent 
boundary layer was calculated using a linear approximation to the relevant characteristic curve. 
The oscillations that occurred in the CNG solutions were eliminated by setting the free parameters 
y1 and y z  in the CNPG method to simple functions of the eigenvalues of the system. 

We have demonstrated that the Petrov-Galerkin technique has potential in the numerical 
solution of hyperbolic systems of partial differential equations. However, we do not claim that 
the particular test functions employed, i.e., equations (32), are the only, or even the best, possible 
test functions. Other types of test function have been proposed by various authors, for example, 
Griffiths and Mitchell34 and Morton and Parrott.19 
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